

HEI-003-0491004

Seat No.

B. Sc. / M. Sc. (Applied Physics) (Sem. I) (CBCS) Examination

November / December - 2017

Paper - 3 : Applied Physics - I
(New Course)

Faculty Code: 003

Subject Code: 0491004

Time: $2\frac{1}{2}$ Hours] [Total Marks: 70]

Instructions: (1) All questions are compulsory.

- (2) Figures on the right side indicate marks.
- 1 Attempt any seven short questions: (two marks each) 14
 - (1) Define:
 - (a) Ampere
 - (b) Kelvin
 - (2) Write dimensions of
 - (a) Area
 - (b) Volume
 - (3) What is a non-inertial frame?
 - (4) Define: Modulus of rigidity (η) .
 - (5) Write down important characteristics of fluids.
 - (6) State suitable physical properties of the thermometric substance.
 - (7) How does a bimetallic thermometer work?
 - (8) What is free or natural vibrations? Give examples.
 - (9) Compare: transverse waves and longitudinal waves.
 - (10) Describe advantages of constant volume hydrogen thermometer.

2	(A)	Write answers of any two: (Five marks each) 10			
		(1)	What are the limitations of dimensional analysis.		
		(2)	Explain: Newton's second law in detail.		
		(3)	Explain: Uniform circular motion and derive an		
			equation $v = \omega r$.		
		(4)	Explain projectile motion and derive equation for time of flight.		
	(B)	Wei	te answers of any two : (two marks each)	4	
	(B)	(1)	4		
		(2)	What is Pseudo or fictitious force? Define:		
		(2)	(a) Meter		
			(b) Kilogram		
		(3)	Write dimensions of		
		(0)	(a) Linear momentum		
			(b) Power		
		(4)	What is an inertial frame?		
		(1)	what is all merdial frame.		
3	(A)	Write answers of any two: (Five marks each)		10	
		(1)	Derive an equation for the rise(h) of liquid in a capillary tube having small radius r.		
		(2)	State and prove Bernoulli's equation.		
		(3)	Derive an equation of Young's modulus of the		
		(-)	material of a wire.		
		(4)	Derive an expression showing relation between		
			Young's modulus Y and bulk modulus K.		
	(B)	Wri	te answers of any two: (two marks each)	4	
		(1)	Write down Pascal's law.		
		(2)	Define: Surface tension of a liquid.		
		(3)	Define: viscosity.		
		(4)	Define: Modulus of rigidity (η) .		
HEI	-003-0	04910	004] 2 [Con	td	

- 4 (A) Write answers of any two: (Five marks each) 10
 - (1) Describe a simple procedure to establish an empirical temperature scale.
 - (2) Explain construction and working of a constant volume hydrogen thermometer.
 - (3) Explain thermal conductivity in detail with necessary figure and equations.
 - (4) Derive Newton's law of cooling, $T T_0 = e^{(-kt+c)}$.
 - (B) Write answers of any **two**: (two marks each)
 - (1) State Prevost's theory of heat exchange.
 - (2) Explain: A perfect Black body.
 - (3) Describe use of thermistor as a thermometer.
 - (4) How does a bimetallic thermometer work?
- 5 (A) Write answers of any two: (Five marks each) 10
 - (1) Explain damped harmonic motion in detail.
 - (2) Write a note on forced oscillations and resonance.
 - (3) Derive displacement equation $x = A \sin(\omega t + \theta)$ for simple harmonic motion.
 - (4) Explain: general characteristics of waves.
 - (B) Write answers of any **two**: (two marks each)
 - (1) Describe simple harmonic motion in short.
 - (2) What is time period in simple harmonic motion? Write equation of time period.
 - (3) What is free or natural vibrations? Give examples.
 - (4) What are sound waves? Explain in short.

4

4